# Delta Sensitivity of Interest Rate Swap – Part I

This post explains how to calculate delta sensitivities or delta vector of interest rate swap. Delta can be calculated by either 1) zero delta or 2) market delta. To the best of our knowledge, FRTB can use these two methods but SIMM use the market Greeks. We implement R code for two approaches.

### Introduction

For detailed information about the Libor IRS swap pricing and zero curve bootstrapping, refer to the following posts.

In previous posts, we have priced a 5Y Libor IRS swap and generated a zero curve from market swap rates by using bootstrapping. Based on these works, we calculate Greeks of IRS. Since IRS does not have any option characteristics, our focus is to calculate the delta sensitivities or delta vector. And for convenience, swap value is defined as (floating leg – fixed leg).

### Delta Sensitivity

ISDA SIMM uses the following definitions of interest rate risk delta (xx is a risk factor). There are, of course, several versions of it but they are all essentially the same.

For ease of notation, let z(t) and s(t) denote the (bootstrapped) zero rates or zero curve and (market observed) swap rates or swap curve at time t respectively.

There are two approaches for the calculation of delta: 1) zero delta, 2) market delta.

#### Zero Delta

Zero delta approach calculates delta sensitivities by bumping up or down zero rates one by one in order.

Once the zero curve (z(t)) is generated from market swap rates (s(t)),

Bumping up (z(t; ti + 0.5bp) or down (z(t; ti−0.5bp))delta(ti) is calculated and this process is applied for all ti.

Here, ti, i = 1, 2,…, ni = 1, 2,…, n i are maturities or dates of market swap rates at which the corresponding zero rates are bootstrapped.

#### Market Delta

Market delta approach calculates delta sensitivities by bumping up or down market swap rates one by one in order. Unlike the zero delta, every time we bump one market swap rate of a selected maturity, we should run a bootstrapping for finding new zero curve. Using this newly generated zero curve, we can calculate delta sensitivity at time  ti as follows.

The following R code calculates delta sensitivities of IRS using these two approaches.

The following R code calculates delta sensitivities of IRS using these two approaches.

 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509 #=========================================================================## Financial Econometrics & Derivatives, ML/DL using R, Python, Tensorflow  # by Sang-Heon Lee ## https://kiandlee.blogspot.com#————————————————————————-## Calculate Delta Sensitivities of Libor IRS#=========================================================================# graphics.off()  # clear all graphsrm(list = ls()) # remove all files from your workspace #=========================================================================# Functions – Definition#========================================================================= #————————————————————–# Calculation of IRS swap price#————————————————————–f_zero_prr_IRS <– function(    fixed_rate,                   # fixed rate    vd.fixed_date, vd.float_date, # date for two legs    vd.zero_date,  v.zero_rate,   # zero curve (dates, rates)    d.spot_date,   no_amt,        # spot date, nominal amt    save_cf_yn) {                 # “y” : CF save                          #———————————————————-    # 0) Preprocessing    #———————————————————-        # convert spot date from date(d) to numeric(n)    n.spot_date <– as.numeric(d.spot_date)        # Interpolation of zero curve    vn.zero_date <– as.numeric(vd.zero_date)    f_linear     <– approxfun(vn.zero_date, v.zero_rate,                           method=“linear”)    vn.zero_date.inter <– n.spot_date:max(vn.zero_date)    v.zero_rate.inter  <– f_linear(vn.zero_date)        # number of CFs    ni <– length(vd.fixed_date)    nj <– length(vd.float_date)        # output data.frame with CF dates and its interpolated zero    df.fixed = data.frame(d.date = vd.fixed_date,                          n.date = as.numeric(vd.fixed_date))    df.float = data.frame(d.date = vd.float_date,                          n.date = as.numeric(vd.float_date))        #———————————————————-    #  1)  Fixed Leg    #———————————————————-        # zero rate for discounting    df.fixed\$zero_DC = f_linear(as.numeric(df.fixed\$d.date))        # discount factor    df.fixed\$DF <– exp(–df.fixed\$zero_DC*                       (df.fixed\$n.date–n.spot_date)/365)        # tau, CF    for(i in 1:ni) {                ymd      <– df.fixed\$d.date[i]        ymd_prev <– df.fixed\$d.date[i–1]        if(i==1) ymd_prev <– d.spot_date                d <– as.numeric(strftime(ymd, format = “%d”))        m <– as.numeric(strftime(ymd, format = “%m”))        y <– as.numeric(strftime(ymd, format = “%Y”))                d_prev <– as.numeric(strftime(ymd_prev, format = “%d”))        m_prev <– as.numeric(strftime(ymd_prev, format = “%m”))        y_prev <– as.numeric(strftime(ymd_prev, format = “%Y”))                # 30I/360        tau <– (360*(y–y_prev) + 30*(m–m_prev) + (d–d_prev))/360                # cash flow rate        df.fixed\$rate[i] <– fixed_rate                # Cash flow at time ti        df.fixed\$CF[i] <– fixed_rate*tau*no_amt # day fraction    }        # Present value of CF    df.fixed\$PV = df.fixed\$CF*df.fixed\$DF            #———————————————————-    #  2)  Floating Leg    #———————————————————-        # zero rate for discounting    df.float\$zero_DC = f_linear(as.numeric(df.float\$d.date))        # discount factor    df.float\$DF <– exp(–df.float\$zero_DC*                       (df.float\$n.date–n.spot_date)/365)        # tau, forward rate, CF    for(i in 1:nj) {                date      <– df.float\$n.date[i]        date_prev <– df.float\$n.date[i–1]                DF        <– df.float\$DF[i]        DF_prev   <– df.float\$DF[i–1]                if(i==1) {            date_prev <– n.spot_date            DF_prev   <– 1        }                # ACT/360        tau <– (date – date_prev)/360                # forward rate        fwd_rate <– (1/tau)*(DF_prev/DF–1)                # cash flow rate        df.float\$rate[i] <– fwd_rate                # Cash flow amount at time ti        df.float\$CF[i] <– fwd_rate*tau*no_amt # day fraction    }        # Present value of CF    df.float\$PV = df.float\$CF*df.float\$DF        # check for cash flows    if (save_cf_yn == “y”) {        # print(df.float); print(df.fixed)        write.csv(df.float, “CF_float.csv”)        write.csv(df.fixed, “CF_fixed.csv”)    }     return(sum(df.float\$PV) – sum(df.fixed\$PV))}  #————————————————————–# IRS swap zero curve generator#————————————————————–f_zero_maker_IRS <– function(    df.mt,                    # market information data.frame                              # [d.date, swap_rate, source]]    v.unknown_swap_maty_all,  # all unknown swap maturity    vd.fixed_date,            # date for fixed leg    vd.float_date,            # date for float leg    d.spot_date,              # spot date    no_amt) {                 # nominal principal amount        # convert spot date from date(d) to numeric(n)    n.spot_date <– as.numeric(d.spot_date)        # for bootstrapped zero curve    df.zr <– data.frame(        d.date    = df.mt\$d.date,        n.date    = as.numeric(df.mt\$d.date),        tau       = as.numeric(df.mt\$d.date) – n.spot_date,        taui      = as.numeric(df.mt\$d.date) – n.spot_date,        swap_rate = df.mt\$swap_rate,         zero_rate = rep(0,length(df.mt\$d.date)),        DF        = rep(0,length(df.mt\$d.date)))        # tau(i) = t(i) – t(i-1)    df.zr\$taui[2:nrow(df.zr)] <–         df.zr\$n.date[2:nrow(df.zr)] –         df.# semi-annual date[1: (nrow(df.zr)–1)]        # divide rows according to its source or instrument type    rows_deposit <– which(df.mt\$source==“deposit”)    rows_futures <– which(df.mt\$source==“futures”)    rows_swap    <– which(df.mt\$source==“swap”)        #————————————————————–    # 3. Bootstrapping – Deposit    #————————————————————–        for(i in rows_deposit) {                # 1) calculate discount factor for deposit        df.zr\$DF[i] <– 1/(1+df.zr\$swap_rate[i]*df.zr\$tau[i]/360)                # 2) convert DF to spot rate        df.zr\$zero_rate[i] <– 365/df.zr\$tau[i]*log(1/df.zr\$DF[i])    }        #————————————————————–    # 4. Bootstrapping – Futures    #————————————————————–        # No convexity adjustment is made    for(i in rows_futures) {                # 1) discount factor from t(i-1) to t(i)        df.zr\$DF[i] <– 1/(1+df.zr\$swap_rate[i]*df.zr\$taui[i]/360)                # 2) discount factor from spot date to t(i)        df.zr\$DF[i] <– df.zr\$DF[i–1]*df.zr\$DF[i]                # 3) zero rate from discount factor        df.zr\$zero_rate[i] <– 365/df.zr\$tau[i]*log(1/df.zr\$DF[i])    }        #————————————————————–    # 5. Bootstrapping – Swaps    #————————————————————–        k <– 1    for(i in rows_swap) {                # unknown swap maturity in year        swap_maty <– v.unknown_swap_maty_all[k]                # 1) find one unknown zero rate for one swap maturity        m<–optim(0.01, objf,            control = list(abstol=10^(–20), reltol=10^(–20),                           maxit=50000, trace=2),            method = c(“Brent”),            lower = 0, upper = 0.1,               # for Brent            v.unknown_swap_maty = swap_maty,      # unknown zero maturity            v.swap_rate = df.zr\$swap_rate[i],     # observed swap rate            vd.fixed_date = vd.fixed_date,        # date for fixed leg            vd.float_date = vd.float_date,        # date for float leg            vd.zero_date_all = df.zr\$d.date[1:i], # all dates for zero curve            v.zero_rate_known  = df.zr\$zero_rate[1: (i–1)], # known zero rates            d.spot_date = d.spot_date,             no_amt = no_amt)                # 2) update this zero curve with the newly found zero rate        df.zr\$zero_rate[i] <– m\$par                # 3) convert this new zero rate to discount factor        df.zr\$DF[i] <– exp(–df.zr\$zero_rate[i]*df.zr\$tau[i]/365)                k <– k + 1    }    return(df.zr)} #————————————————————–# objective function to be minimized#————————————————————–objf <– function(    v.unknown_swap_zero_rate, # unknown zero curve (rates)    v.unknown_swap_maty,      # unknown swap maturity    v.swap_rate,              # fixed rate    vd.fixed_date,            # date for fixed leg    vd.float_date,            # date for float leg    vd.zero_date_all,         # all dates for zero curve    v.zero_rate_known,        # known zero curve (rates)    d.spot_date,              # spot date    no_amt) {                 # nominal principal amount     # zero curve augmented with zero rates for swaps    v.zero_rate_all <– c(v.zero_rate_known,                         v.unknown_swap_zero_rate)        v.swap_pr <– NULL # vector of swap prices        k <– 1    for(i in v.unknown_swap_maty) {                # calculate IRS swap price        swap_pr <– f_zero_prr_IRS(            v.swap_rate[k],          # fixed rate,             vd.fixed_date[1: (2*i)],  # semi-annual date            vd.float_date[1: (4*i)],  # quarterly   date            vd.zero_date_all,        # zero curve (dates)            v.zero_rate_all,         # zero curve (rates)            d.spot_date, no_amt, “n”)                # concatenate swap prices        v.swap_pr <– c(v.swap_pr, swap_pr)        k <– k + 1    }        return(sum(v.swap_pr^2))} #=========================================================================# Main #========================================================================= #————————————————————–# 1. Market Information#————————————————————– # Zero curve from Bloomberg as of 2021-06-30 until 5-year maturitydf.mt <– data.frame(        d.date = as.Date(c(“2021-10-04”,“2021-12-15”,                       “2022-03-16”,“2022-06-15”,                       “2022-09-21”,“2022-12-21”,                       “2023-03-15”,“2023-07-03”,                       “2024-07-02”,“2025-07-02”,                       “2026-07-02”)),        # we use swap rate not zero rate.    swap_rate= c(0.00145750000000000,                 0.00139609870272047,                 0.00203838571440434,                 0.00197747863867587,                 0.00266249271921742,                 0.00359490949297661,                 0.00512603194652204,                 0.00328354999423027,                 0.00571049988269806,                 0.00793000012636185,                 0.00964949995279312    ),     source = c(“deposit”, rep(“futures”,6), rep(“swap”, 4))) #————————————————————–# 2. Libor Swap Specification#————————————————————– d.spot_date  <– as.Date(“2021-07-02”)    # spot date (date type)n.spot_date  <– as.numeric(d.spot_date)  # spot date (numeric type) no_amt     <– 10000000      # notional principal amount # swap cash flow schedule from Bloomberg lt.cf_date <– list(         fixed = as.Date(c(“2022-01-04”,“2022-07-05”,                      “2023-01-03”,“2023-07-03”,                      “2024-01-02”,“2024-07-02”,                      “2025-01-02”,“2025-07-02”,                      “2026-01-02”,“2026-07-02”)),        float = as.Date(c(“2021-10-04”,“2022-01-04”,                      “2022-04-04”,“2022-07-05”,                      “2022-10-03”,“2023-01-03”,                      “2023-04-03”,“2023-07-03”,                      “2023-10-02”,“2024-01-02”,                      “2024-04-02”,“2024-07-02”,                      “2024-10-02”,“2025-01-02”,                      “2025-04-02”,“2025-07-02”,                      “2025-10-02”,“2026-01-02”,                      “2026-04-02”,“2026-07-02”)))  #————————————————————–# 3. 5-year swap price : base#————————————————————– i = 5 # 5-year swap # zero pricingdf.zr <– f_zero_maker_IRS(           df.mt, c(2,3,4,5),           lt.cf_date\$fixed, lt.cf_date\$float,            d.spot_date, no_amt) pr    <– f_zero_prr_IRS(           df.mt\$swap_rate[i+6],           lt.cf_date\$fixed[1: (2*i)],            lt.cf_date\$float[1: (4*i)],           df.zr\$d.date, df.zr\$zero_rate,            d.spot_date,no_amt, save_cf_yn = “y”) print(paste0(i,“-year Swap price at spot date = “, pr)) df.zr_delta    <– df.mt_delta    <– df.zr[,–c(2,3,4)]df.zr_delta\$pr <– df.mt_delta\$pr <– pr    #————————————————————–# 3. Bump and Reprice for Market Greeks#————————————————————– df.mt_delta\$delta <– df.mt_delta\$pr_up <– df.mt_delta\$pr_dn <– NA # iteration for all market maturitiesfor(r in 1:11) {        #———————    # bump up (1bp up)    #———————    df.mt_bump <– df.mt   # initialization    df.mt_bump\$swap_rate[r] <– df.mt_bump\$swap_rate[r] + 0.0001         # zero pricing    df.zr <– f_zero_maker_IRS(df.mt_bump, c(2,3,4,5),               lt.cf_date\$fixed, lt.cf_date\$float,                d.spot_date, no_amt)    pr    <– f_zero_prr_IRS(df.mt\$swap_rate[i+6],               lt.cf_date\$fixed[1: (2*i)],                lt.cf_date\$float[1: (4*i)],               df.zr\$d.date, df.zr\$zero_rate,                d.spot_date, no_amt, “n”)        # save price with bumping up    df.mt_delta\$pr_up[r] <– pr        # check whether swap prices at spot date is at par    pr    <– f_zero_prr_IRS(df.mt_bump\$swap_rate[i+6],               lt.cf_date\$fixed[1: (2*i)],               lt.cf_date\$float[1: (4*i)],               df.zr\$d.date, df.zr\$zero_rate,                d.spot_date,no_amt, “n”)        print(paste0(i,“-year Swap price at spot date = “, pr))        #———————    # bump down (1bp down)    #———————    df.mt_bump <– df.mt   # initialization    df.mt_bump\$swap_rate[r] <– df.mt_bump\$swap_rate[r] – 0.0001         # zero pricing    df.zr <– f_zero_maker_IRS(df.mt_bump, c(2,3,4,5),               lt.cf_date\$fixed, lt.cf_date\$float,                d.spot_date, no_amt)        pr <– f_zero_prr_IRS(df.mt\$swap_rate[i+6],            lt.cf_date\$fixed[1: (2*i)], lt.cf_date\$float[1: (4*i)],            df.zr\$d.date, df.zr\$zero_rate, d.spot_date,no_amt, “n”)        # save price with bumping down    df.mt_delta\$pr_dn[r] <– pr        # check whether swap prict at spot date is at par    pr <– f_zero_prr_IRS(df.mt_bump\$swap_rate[i+6],            lt.cf_date\$fixed[1: (2*i)], lt.cf_date\$float[1: (4*i)],            df.zr\$d.date, df.zr\$zero_rate, d.spot_date,no_amt, “n”)        print(paste0(i,“-year Swap price at spot date = “, pr))} # Market Greeks : Delta calculationdf.mt_delta\$delta <– (df.mt_delta\$pr_up –                       df.mt_delta\$pr_dn)/2  df.mt_delta x11(width = 5, height = 3.5)barplot(delta ~ substr(d.date,1,7), data = df.mt_delta,         width = 0.5, col = “blue”) x11(width = 5, height = 3.5)barplot(delta ~ substr(d.date,1,7), data = df.mt_delta[1:10,],        width = 0.5, col = “green”)   #————————————————————–# 4. Bump and Reprice for Zero Greeks#————————————————————– df.zr_delta\$delta <– df.zr_delta\$pr_up <– df.zr_delta\$pr_dn <– NA # zero pricingdf.zr <– f_zero_maker_IRS(df.mt, c(2,3,4,5),                            lt.cf_date\$fixed, lt.cf_date\$float, d.spot_date, no_amt) for(r in 1:11) {     #———————    # bump up (1bp up)    #———————    df.zr_bump    <– df.zr  # initialization    df.zr_bump\$zero_rate[r] <– df.zr_bump\$zero_rate[r] + 0.0001     # zero pricing    pr   <– f_zero_prr_IRS(df.mt\$swap_rate[i+6],              lt.cf_date\$fixed[1: (2*i)], lt.cf_date\$float[1: (4*i)],              df.zr_bump\$d.date, df.zr_bump\$zero_rate,               d.spot_date, no_amt, “n”)        # save price with bumping up    df.zr_delta\$pr_up[r] <– pr     #———————    # bump down (1bp down)    #———————    df.zr_bump    <– df.zr  # initialization    df.zr_bump\$zero_rate[r] <– df.zr_bump\$zero_rate[r] – 0.0001     # zero pricing    pr <– f_zero_prr_IRS(df.mt\$swap_rate[i+6],            lt.cf_date\$fixed[1: (2*i)], lt.cf_date\$float[1: (4*i)],            df.zr_bump\$d.date, df.zr_bump\$zero_rate,             d.spot_date,no_amt, “n”)        # save price with bumping down    df.zr_delta\$pr_dn[r] <– pr} # Market Greeks : Delta calculationdf.zr_delta\$delta <– (df.zr_delta\$pr_up –                       df.zr_delta\$pr_dn)/2 df.zr_delta x11(width = 5, height = 3.5)barplot(delta ~ substr(d.date,1,7), data = df.zr_delta,         width = 0.5, col = “blue”) x11(width = 5, height = 3.5)barplot(delta ~ substr(d.date,1,7), data = df.zr_delta[1:10,],        width = 0.5, col = “green”) Colored by Color Scripter cs

Stay tuned for the next installment to learn about the output demonstrating zero delta vector along the maturities.

##### Disclosure: Interactive Brokers

Information posted on IBKR Traders’ Insight that is provided by third-parties and not by Interactive Brokers does NOT constitute a recommendation by Interactive Brokers that you should contract for the services of that third party. Third-party participants who contribute to IBKR Traders’ Insight are independent of Interactive Brokers and Interactive Brokers does not make any representations or warranties concerning the services offered, their past or future performance, or the accuracy of the information provided by the third party. Past performance is no guarantee of future results.

This material is from SH Fintech Modeling and is being posted with permission from SH Fintech Modeling. The views expressed in this material are solely those of the author and/or SH Fintech Modeling and IBKR is not endorsing or recommending any investment or trading discussed in the material. This material is not and should not be construed as an offer to sell or the solicitation of an offer to buy any security. To the extent that this material discusses general market activity, industry or sector trends or other broad based economic or political conditions, it should not be construed as research or investment advice. To the extent that it includes references to specific securities, commodities, currencies, or other instruments, those references do not constitute a recommendation to buy, sell or hold such security. This material does not and is not intended to take into account the particular financial conditions, investment objectives or requirements of individual customers. Before acting on this material, you should consider whether it is suitable for your particular circumstances and, as necessary, seek professional advice.

In accordance with EU regulation: The statements in this document shall not be considered as an objective or independent explanation of the matters. Please note that this document (a) has not been prepared in accordance with legal requirements designed to promote the independence of investment research, and (b) is not subject to any prohibition on dealing ahead of the dissemination or publication of investment research.

Any trading symbols displayed are for illustrative purposes only and are not intended to portray recommendations.