# Stock Market Data And Analysis In Python – Part IV

Contributor:
QuantInsti
Visit: QuantInsti

See Part I for instructions on how to get `pandas_datareader` or `yfinance` module to retrieve the data, Part II to learn how to get stock market data for different geographies, and Part III for a tutorial on how to analyse the stock market data for all the stocks which make up the S&P 500.

## Resample Stock Data

Convert 1-minute data to 1-hour data or Resample Stock Data

During strategy modelling, you might be required to work with a custom frequency of stock market data such as 15 minutes or 1 hour or even 1 month.

If you have minute level data, then you can easily construct the 15 minutes, 1 hour or daily candles by resampling them. Thus, you don’t have to buy them separately.

In this case, you can use the pandas resample method to convert the stock market data to the frequency of your choice. The implementation of these is shown below where a 1-minute frequency data is converted to 10-minute frequency data.

The first step is to define the dictionary with the conversion logic. For example, to get the open value the first value will be used, to get the high value the maximum value will be used and so on.

The name Open, High, Low, Close and Volume should match the column names in your dataframe.

``````ohlcv_dict = {
'Open': 'first',
'High': 'max',
'Low': 'min',
'Close': 'last',
'Volume': 'sum'
}``````

Convert the index to datetime timestamp as by default string is returned. Then call the resample method with the frequency such as:

• 10T for 10 minutes,
• D for 1 day and
• M for 1 month

``````# Import package & get the data
import yfinance as yf
period="5d",
interval="1m",

# Define the resampling logic
ohlcv_dict = {
'Open': 'first',
'High': 'max',
'Low': 'min',
'Close': 'last',
'Volume': 'sum'
}

# Resample the data

``````
``resample_data_10.py hosted with ❤ by GitHub``

Yahoo finance has limited set of minute level data. if you need the stock market data for higher range then you can get the data from data vendors such as Quandl, AlgoSeek or your broker.

Stay tuned for next installment in which Ishan Shah will demonstrate using Quandl to get Stock Market Data.

See https://blog.quantinsti.com/stock-market-data-analysis-python/ for additional insight on this topic.

Past performance is not indicative of future results.

Any stock, options or futures symbols displayed are for illustrative purposes only and are not intended to portray recommendations.

##### Disclosure: Interactive Brokers

Information posted on IBKR Traders’ Insight that is provided by third-parties and not by Interactive Brokers does NOT constitute a recommendation by Interactive Brokers that you should contract for the services of that third party. Third-party participants who contribute to IBKR Traders’ Insight are independent of Interactive Brokers and Interactive Brokers does not make any representations or warranties concerning the services offered, their past or future performance, or the accuracy of the information provided by the third party. Past performance is no guarantee of future results.

This material is from QuantInsti and is being posted with permission from QuantInsti. The views expressed in this material are solely those of the author and/or QuantInsti and IBKR is not endorsing or recommending any investment or trading discussed in the material. This material is not and should not be construed as an offer to sell or the solicitation of an offer to buy any security. To the extent that this material discusses general market activity, industry or sector trends or other broad based economic or political conditions, it should not be construed as research or investment advice. To the extent that it includes references to specific securities, commodities, currencies, or other instruments, those references do not constitute a recommendation to buy, sell or hold such security. This material does not and is not intended to take into account the particular financial conditions, investment objectives or requirements of individual customers. Before acting on this material, you should consider whether it is suitable for your particular circumstances and, as necessary, seek professional advice.

In accordance with EU regulation: The statements in this document shall not be considered as an objective or independent explanation of the matters. Please note that this document (a) has not been prepared in accordance with legal requirements designed to promote the independence of investment research, and (b) is not subject to any prohibition on dealing ahead of the dissemination or publication of investment research.

Any trading symbols displayed are for illustrative purposes only and are not intended to portray recommendations.