This website uses cookies to collect usage information in order to offer a better browsing experience. By browsing this site or by clicking on the "ACCEPT COOKIES" button you accept our Cookie Policy.

Stock Market Data And Analysis In Python – Part VI

QuantInsti

Contributor:
QuantInsti
Visit: QuantInsti

See Part I for instructions on how to get pandas_datareader or yfinance module to retrieve the data, and Part II to learn how to get stock market data for different geographies. In Part III and Part IV, review the tutorial on how to analyse the stock market data for all the stocks which make up the S&P 500. Part V explains how to use Quandl to get stock market data.

Fundamental Data

We have used yfinance to get the fundamental data.

The first step is to set the ticker and then call the appropriate properties to get the right stock market data.

If yfinance is not installed on your computer, then run the below line of code from your Jupyter Notebook to install yfinance.

!pip install yfinance
install yfinance.py hosted with ❤ by GitHub
# Import yfinance
import yfinance as yf

# Set the ticker as MSFT
msft = yf.Ticker("MSFT")
Import yfinance and set the ticker.py hosted with ❤ by GitHub

Key Ratios

You can fetch the latest price to book ratio and price to earnings ratio as shown below.

# get price to book
pb = msft.info['priceToBook']
pe = msft.info['regularMarketPrice']/msft.info['epsTrailingTwelveMonths']
print('Price to Book Ratio is: %.2f' % pb)
print('Price to Earnings Ratio is: %.2f' % pe)
Get price to book.py hosted with ❤ by GitHub

Revenues

# show revenues
revenue = msft.financials.loc['Total Revenue']
plt.bar(revenue.index, revenue.values)
plt.ylabel("Total Revenues")
plt.show()
Revenue.py hosted with ❤ by GitHub

Earnings Before Interest and Taxes (EBIT)

EBIT = msft.financials.loc['Earnings Before Interest and Taxes']
plt.bar(EBIT.index, EBIT.values)
plt.ylabel("EBIT")
plt.show()
EBIT.py hosted with ❤ by GitHub

Balance sheet, cash flows and other information

# show income statement
msft.financials
# show balance heet
msft.balance_sheet
# show cashflow
msft.cashflow
# show other info
msft.info
Show information.py hosted with ❤ by GitHub

Stay tuned for next installment in which Ishan Shah will share a tutorial on Stock Market Data Visualization and Analysis.

See https://blog.quantinsti.com/stock-market-data-analysis-python/ for additional insight on this topic.

Past performance is not indicative of future results.

Any stock, options or futures symbols displayed are for illustrative purposes only and are not intended to portray recommendations.

Disclosure: Interactive Brokers

Information posted on IBKR Traders’ Insight that is provided by third-parties and not by Interactive Brokers does NOT constitute a recommendation by Interactive Brokers that you should contract for the services of that third party. Third-party participants who contribute to IBKR Traders’ Insight are independent of Interactive Brokers and Interactive Brokers does not make any representations or warranties concerning the services offered, their past or future performance, or the accuracy of the information provided by the third party. Past performance is no guarantee of future results.

This material is from QuantInsti and is being posted with permission from QuantInsti. The views expressed in this material are solely those of the author and/or QuantInsti and IBKR is not endorsing or recommending any investment or trading discussed in the material. This material is not and should not be construed as an offer to sell or the solicitation of an offer to buy any security. To the extent that this material discusses general market activity, industry or sector trends or other broad based economic or political conditions, it should not be construed as research or investment advice. To the extent that it includes references to specific securities, commodities, currencies, or other instruments, those references do not constitute a recommendation to buy, sell or hold such security. This material does not and is not intended to take into account the particular financial conditions, investment objectives or requirements of individual customers. Before acting on this material, you should consider whether it is suitable for your particular circumstances and, as necessary, seek professional advice.

In accordance with EU regulation: The statements in this document shall not be considered as an objective or independent explanation of the matters. Please note that this document (a) has not been prepared in accordance with legal requirements designed to promote the independence of investment research, and (b) is not subject to any prohibition on dealing ahead of the dissemination or publication of investment research.

trading top