Using Python Lambda Function in Trading – Part II

QuantInsti

Contributor:
QuantInsti
Visit: QuantInsti

See Part I for an overview of the lambda function.

Python lambda in trading

With Python’s lambda function, we can write several codes for different trade related inputs. Let us see the examples for trading below.


Benefits of lambda function in trading

There are quite a few benefits of using lambda function, even for trading. Let us see those benefits below.

Continuous scaling

Lambda precisely manages the scaling of your functions (or application) by running codes parallelly for different trading inputs, and processes each input individually.

Helps in time management

Lambda frees up your programming resources by taking over the time consumed by defining several functions. With lambda, you do not need to define every function and hence, you can save lot of time.

Modernises your trading business

Lambda enables you to use functions with pre-trained machine learning models to include artificial intelligence in your trade easily. A single application programming interface (API) request can classify images, analyze videos, convert speech to text, perform natural language processing, and more.


Conclusion

Lambda function is a useful function for traders who code with the help of Python. Once known by the programmer, it is the preferred function since it helps manage time, is quick while coding and has advanced operations.

Find out more about trading with Python with our course Python for trading!

Disclosure: Interactive Brokers

Information posted on IBKR Traders’ Insight that is provided by third-parties and not by Interactive Brokers does NOT constitute a recommendation by Interactive Brokers that you should contract for the services of that third party. Third-party participants who contribute to IBKR Traders’ Insight are independent of Interactive Brokers and Interactive Brokers does not make any representations or warranties concerning the services offered, their past or future performance, or the accuracy of the information provided by the third party. Past performance is no guarantee of future results.

This material is from QuantInsti and is being posted with permission from QuantInsti. The views expressed in this material are solely those of the author and/or QuantInsti and IBKR is not endorsing or recommending any investment or trading discussed in the material. This material is not and should not be construed as an offer to sell or the solicitation of an offer to buy any security. To the extent that this material discusses general market activity, industry or sector trends or other broad based economic or political conditions, it should not be construed as research or investment advice. To the extent that it includes references to specific securities, commodities, currencies, or other instruments, those references do not constitute a recommendation to buy, sell or hold such security. This material does not and is not intended to take into account the particular financial conditions, investment objectives or requirements of individual customers. Before acting on this material, you should consider whether it is suitable for your particular circumstances and, as necessary, seek professional advice.

In accordance with EU regulation: The statements in this document shall not be considered as an objective or independent explanation of the matters. Please note that this document (a) has not been prepared in accordance with legal requirements designed to promote the independence of investment research, and (b) is not subject to any prohibition on dealing ahead of the dissemination or publication of investment research.

Any trading symbols displayed are for illustrative purposes only and are not intended to portray recommendations.